浅色圆锥曲线爱好者PostsNotesAbout

2020-01-29-k8sjp-27

Amazon EKS によるスケーラブルな CTR 予測システムを導入した話

job ~ worker system

userID + adID ~ boolean

CPC(Cost Per Click)

  • lightGBM
  • Spark on k8s

1h window

10~3 億レコード EC2 => 10 hours

goal: 1h + scaling

  • framework version

  • cl / cd

  • learn / estimate using different resource

  • container

  • helm

  • Node Group Autoscaler

spark => s3 => sqs => pod scaler + cluster auto scaler => message => download model => estimate => s3 => delete message => scale down

k8s job X

  • kick outside cluster like lambda
  • parallelism not flexible

pub/sub + Fan-Out OK

onErr => wait until message visibility

available message >1 scale up available message =0 scale down

python signal SIGTERM

config injection helm => value.yml + stg|pro|dev.yml

save in/out container in:

  • sync with git hash
  • rolling update
  • need build + deploy out:
  • no need to build + deploy
  • simple

based on latest <- only see the results

Azure Kubernetes Service で実現する超低予算&(ほぼ)フルマネージド&本格的な WordPress 環境

  • azure.sios.jp
  • tech-lab.sios.jp

admin 2 + frontend 2 => 4 clusters

Wp supter Cache

Azure Load Balancer

nginx ingress

Azure Container Registry

ptrStop + SIGTERM => 3s+ 30s+ apachectl graceful-stop => termination

SMB or NFS or VM NPS

Blackfire <- profiler

35000/月

app gateway <- was in preview

azure backup to backup vm

connpass

© 2023